Abstract

Inherent in the structure of bulk CMOS integrated circuits are four-layer parasitic paths that can become activated into a low impedance, high-current state, i.e., latch-up. Activation can be accomplished by photocurrents generated by ionizing radiation or by terminal over-voltage spikes. As loss of functionality or device destruction can result, latch-up is undesirable. This paper describes a method of latchup prevention by the use of n on n+ starting material. A graphical analysis is presented that aids in the understanding of the latch-up mechanism and provides insight into the elimination of that state. Experimental data in support of the model is presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.