Abstract
Ca2+ concentration ([Ca2+])-dependent cross-bridge phosphorylation by myosin light chain kinase is postulated to be the primary regulator of stress development in smooth muscle. A four-state model of cross-bridge function, regulated only by [Ca2+]-dependent changes in myosin kinase activity, has been proposed to explain contraction and the latch state of smooth muscle (high force with reduced cross-bridge cycling and ATP consumption). A key test of this model is to determine whether changes in myoplasmic [Ca2+], per se, can quantitatively predict changes in myosin kinase activity, cross-bridge phosphorylation, and therefore force production. We find that changes in aequorin-estimated myoplasmic [Ca2+] can quantitatively predict the time course of phosphorylation and isometric stress production in response to stimulation with histamine and angiotensin II and during adenosine 3',5'-cyclic monophosphate-mediated relaxation when [Ca2+] is not changing rapidly. These results suggest that changes in myoplasmic [Ca2+] and activation of myosin light chain kinase may be sufficient to explain both contraction and relaxation of agonist stimulated swine carotid arterial smooth muscle.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.