Abstract
In this paper we extend the theory of last multipliers as solutions of the Liouville’s transport equation to Lie algebroids with their top exterior power as trivial line bundle (previously developed for vector fields and multivectors). We define the notion of exact section and the Liouville equation on Lie algebroids. The aim of the present work is to develop the theory of this extension from the tangent bundle algebroid to a general Lie algebroid (e.g. the set of sections with a prescribed last multiplier is still a Gerstenhaber subalgebra). We present some characterizations of this extension in terms of Witten and Marsden differentials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.