Abstract

Uranium series and radiocarbon ages were measured in corals from the uplifted coral terraces of Huon Peninsula (HP), Papua New Guinea, to provide a calibration for the 14C time scale beyond 30 ka (kilo annum). Improved analytical procedures, and quantitative criteria for sample selection, helped discriminate diagenetically altered samples. The base-line of the calibration curve follows the trend of increasing divergence from calendar ages, as established by previous studies. Superimposed on this trend, four well-defined peaks of excess atmospheric radiocarbon were found ranging in magnitude from 100% to 700%, relative to current levels. They are related to episodes of sea-level rise and reef growth at HP. These peaks appear to be synchronous with Heinrich Events and concentrations of ice-rafted debris found in North Atlantic deep-sea cores. Relative timing of sea-level rise and atmospheric 14C excess imply the following sequence of events: An initial sea-level high is followed by a large increase in atmospheric 14C as the sea-level subsides. Over about 1800 years, the atmospheric radiocarbon drops to below present ambient levels. This cycle bears a close resemblance to ice-calving episodes of Dansgaard-Oeschger and Bond cycles and the slow-down or complete interruption of the North Atlantic thermohaline circulation. The increases in the atmospheric 14C levels are attributed to the cessation of the North Atlantic circulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.