Abstract
Valid instrumental variables (IVs) must not directly impact the outcome variable and must also be uncorrelated with nonmeasured variables. However, in practice, IVs are likely to be invalid. The existing methods can lead to large bias relative to standard errors in situations with many weak and invalid instruments. In this paper, we derive a LASSO procedure for the k-class IV estimation methods in the linear IV model. In addition, we propose the jackknife IV method by using LASSO to address the problem of many weak invalid instruments in the case of heteroscedastic data. The proposed methods are robust for estimating causal effects in the presence of many invalid and valid instruments, with theoretical assurances of their execution. In addition, two-step numerical algorithms are developed for the estimation of causal effects. The performance of the proposed estimators is demonstrated via Monte Carlo simulations as well as an empirical application. We use Mendelian randomization as an application, wherein we estimate the causal effect of body mass index on the health-related quality of life index using single nucleotide polymorphisms as instruments for body mass index.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.