Abstract

In 2003 Bergman and Stockman introduced the spaser, a quantum amplifier of surface plasmons by stimulated emission of radiation1. They argued that by exploiting a metal/dielectric composite medium it should be possible to construct a nanodevice, where a strong coherent field is built up in a spatial region much smaller than the wavelength1,2. V-shaped metallic structures, combined with semiconductor quantum dots, were discussed as a possible realization of the spaser1. Here we introduce a further development of the spaser concept. We show that by combining the metamaterial and spaser ideas one can create a narrow-diversion coherent source of electromagnetic radiation that is fuelled by plasmonic oscillations. We argue that a two-dimensional array of a certain class of plasmonic resonators supporting coherent current excitations with high quality factor can act as a planar source of spatially and temporally coherent radiation, which we term a ‘lasing spaser.’ The ‘spaser’ (surface plasmon amplification by stimulated emission of radiation) is a relatively new and exciting concept analogous to the laser. It involves amplifying specific surface plasmon modes using a nanoscale device. Zheludev and co-workers extend this concept by suggesting that metamaterials could be used to create a lasing spaser, that is, a spaser that can emit light with high spatial coherence.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.