Abstract
Plasmonic nanolasers (spasers) are of intense interest, attributable to their ability to generate a high-intensity coherent radiation. We infiltrated a three-dimensional silica-based photonic crystal (PhC) film with spasers, composed of spherical gold cores, surrounded by silica shells with dye molecules. In spasers, the gold nanospheres supported the surface plasmons and the dye molecules transferred incoming optical energy to the surface plasmons. Our experiments show that such a structure, consisting of a PhC, which acts as an external distributed feedback resonator, and spasers, can serve as a coherent source of electromagnetic radiation. Spasers were locked in phase by the common radiation causing a phenomenon called the lasing spaser: the emission of spatially and temporarily coherent light normal to the surface of the PhC film. The far-field radiation patterns appeared in the shape of the Star-of-David, which is due to the dispersion along the Brillouin zone boundary. The infiltration of the spasers into the PhC led to drastic narrowing of the emission peak and an 80-fold decrease in the spaser generation threshold with respect to the same spasers in a suspension at room temperature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.