Abstract

Photonic crystals1,2 have been extensively used in the control and manipulation of photons in engineered electromagnetic environments provided by means of photonic bandgap effects. These effects are key to realizing future optoelectronic devices, including highly efficient lasers. To date, lasers based on photonic crystal cavities have been exclusively demonstrated in two-dimensional photonic crystal geometries3,4,5,6. However, full confinement of photons and control of their interaction with materials can only be achieved with the use of three-dimensional photonic crystals with complete photonic bandgaps7,8,9,10,11,12,13,14,15,16. We demonstrate, for the first time, the realization of lasing oscillation in a three-dimensional photonic crystal nanocavity. The laser is constructed by coupling a cavity mode exhibiting the highest quality factor yet achieved (∼38,500) with quantum dots. This achievement provides means for exploring the physics of light–matter interactions in a nanocavity–single quantum dot coupling system in which both photons and electrons are confined in three dimensions, as well as for realizing three-dimensional integrated photonic circuits. Researchers demonstrate the first laser confined in all three spatial dimensions by a three-dimensional photonic crystal. The device, in this case driven by quantum dots, represents the long-standing goal of achieving lasing in a cavity formed entirely by a complete-photonic-bandgap medium.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.