Abstract

We review the recent experimental and numerical studies on lasing in photonic nanostructures with short-range order in this chapter. Despite the lack of long-range order, photonic bandgaps can be formed in such structures, and they are isotropic. Our numerical studies show that the photonic bandgaps depends not only on the spatial range of geometric order, but also on the structural topology. The photonic bandedge modes may be spatially localized, in contrast to those of photonic crystals. Lasing has been realized experimentally in semiconductor nanostructures with short-range order. The nature of lasing modes are illustrated, and the lasing characteristic can be controlled by the short-range order.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.