Abstract

Waveguide lasing in a layer of a dye-doped nematic liquid crystal has been observed. The liquid-crystal layer was sandwiched between a quartz substrate and a glass cover plate on whose surface was deposited an interdigitated electrode system. This system had a period of and played a dual role, namely, it created a spatial periodicity of the waveguide medium refractive index (thus creating distributed feedback) and served as a diffraction grating coupling out a part of waveguide radiation into the glass cover plate. The distributed feedback ensured lasing in the 18th diffraction order for the TE modes and in the 19th order for the TM modes of the waveguide. The generated radiation was observed at the exit from the glass plate end face at the angles to the waveguide plane of for TM modes and for TE modes. The intensity and position of the TE emission line showed no regular dependence on the voltage on the electrodes. In the case of TM radiation, an increase in the voltage led to a short-wavelength shift of the laser line and to a decrease in its intensity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.