Abstract

Nanoporous anodic alumina (NAA) is an emerging platform material for photonics and light-based applications. However, demonstrations of narrow bandwidth lasing emissions from this optical material remain limited. Here, we demonstrate that narrow bandwidth NAA-based gradient-index filters (NAA-GIFs) can be optically engineered to achieve high-quality visible lasing. NAA-GIFs fabricated by a modified sinusoidal pulse anodization approach feature a well-resolved, intense, high-quality photonic stopband (PSB). The inner surface of NAA-GIFs is functionalized with rhodamine B (RhoB) fluorophore molecules through micellar solubilization of sodium dodecyl sulfate (SDS) surfactant. Systematic variation of the ratio of SDS and RhoB enables the precise engineering of the light-emitting functional layer to maximize light-driven lasing associated with the slow photon effect at the red edge of NAA-GIFs’ PSB. It is found that the optimal surfactant-to-fluorophore ratio, namely, 20 mM SDS to 0.81 mM RhoB, results in a strong, polarized lasing at ∼612 nm. This lasing was characterized by a remarkably high-quality–gain product of ∼536, a Purcell factor of 2.2, a lasing threshold of ∼0.15 mJ per pulse, and a high-quality polarization ratio of ∼0.7. Our results benefit the advancement of the NAA-based lasing technology for a variety of photonic disciplines such as sensing, tweezing, light harvesting, and photodetection.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.