Abstract

Organic-inorganic halide perovskite semiconductors are ideal gain media for fabricating laser and photonic devices due to high absorption, photoluminescence (PL) efficiency and low nonradiative recombination losses. Herein, organic-inorganic halide perovskite CH3NH3PbI3 is embedded in the Fabry-Perot (FP) microcavity, and a wavelength-tunable excitonic lasing with a threshold of 12.9 μJ cm-2 and the spectral coherence of 0.76 nm are realized. The lasing threshold decreases and the spectral coherence enhances as the temperature decreases; these results are ascribed to the suppression of exciton irradiative recombination caused by thermal fluctuation. Moreover, both lasing and light emission below threshold from the perovskite microcavity (PM) system demonstrate a redshift with the decreasing temperature. These results provide a feasible platform based on the PM system for the study of light-matter interaction for quantum optics and the development of optoelectronic devices such as polariton lasers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call