Abstract
We explore the ability of two-dimensional periodic atom arrays to produce light amplification and generate laser emission when gain is introduced through external optical pumping. Specifically, we predict that lasing can take place for arbitrarily weak atomic scatterers assisted by cooperative interaction among atoms in a 2D lattice. We base this conclusion on analytical theory for three-level scatterers, which additionally reveals a rich interplay between lattice and atomic resonances. Our results provide a general background to understand light amplification and lasing in periodic atomic arrays, with promising applications in the generation, manipulation, and control of coherent photon states at the nanoscale.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.