Abstract
Cluster networks are seen as the future access networks for multimedia streaming, e-commerce, network storage, etc. For these applications, performance and high availability are particularly crucial. Regular topologies are preferred when performance is the primary concern. However, due to spatial constraints or fault-related issues, the network structure may become irregular, which makes more difficult to find deadlock-free minimal paths. Over the recent years, several solutions have been proposed. One of them is the LASH routing, which enables minimal routing by assigning paths to different virtual layers. In this paper, we propose an extension of LASH in order to reduce the number of required virtual layers by allowing transitions between virtual layers. Evaluation results show that the new routing scheme (LASH-TOR) is able to obtain full minimal routing with a reduced number of virtual channels. For torus and mesh networks, with only two virtual channels, LASH throughput is increased by an average factor of improvement of 3.30 for large networks. For regular networks with some unconnected (faulty) links, equal performance improvements are achieved. Even for highly irregular networks of size up to 128 switches the new routing scheme only needs three virtual channels for guaranteeing minimal routing. Besides, LASH-TOR performs well compared to dimension order routing for mesh and torus networks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.