Abstract

LASERLaser is an acronym for Light Amplification by Stimulated Emission of Radiation. Laser action is a general principle of the behavior of light absorption and emission by matter. A laser is an amplifier with positive feedback. Amplification is generated by stimulated emission of photons, and positive feedback is achieved using mirrors. The physics of spontaneous and stimulated emission of photons is directly seen though quantization of the electromagnetic fields. The transition rate for stimulated emission depends on the number of photons already present in the electro-magnetic mode. Spontaneous emission can only be understood as a quantum reaction with the vacuum. Photons created by spontaneous emission act as seeds for subsequent stimulated optical transitions. Population inversion is needed to raise the stimulated emission rate above the rate of spontaneous emission. Optical gain will occur if the stimulated emission rate exceeds the stimulated absorption rate. Such a situation cannot occur in a two level system because the same two levels are responsible both for absorption and emission of photons. In a three or four level system, the equilibrium between absorption and emission is maintained, but the absorption takes place between one set of levels and the emission takes place between a different set. A critical parameter for laser performance is the threshold current density. The double-heterostructure laserDouble heterostructure laser concept is based on confinement of the optical mode and the recombination of electrons and holes to the same region of space. Application of quantum confinement has dramatically improved this design by separate optimization of the optical confinement region and the electron-hole recombination region. This results in a steep reduction in the threshold current and a gain factor that is independent of operating drive current.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.