Abstract

For over 3 decades, lasers have been a tool of the space programs of the world for accomplishing a variety of engineering and scientific objectives. The majority of these uses have, however, been largely Earth-based and only a few lasers have actually been flown and operated in Earth orbit and even fewer on missions to the planets. However, in the last few years laser altimeters, lidars, and ranging systems have been part of space missions to the moon, an asteroid, and Mars; and more are planned and contemplated in the future exploration of the Earth and solar system. Early in 1994, the Clementine mission was launched to the moon and carried a laser altimeter that made the first systematic topographic survey of the moon during its 2-month observation period. This mission significantly improved our understanding of the shape and topography of the moon and along with gravity information obtained from the tracking data modified some of our thinking about the moon, the thickness of ice crust and the isostatic state of the highlands and basins. On September 11, 1997, the Mars Global Surveyor (MGS) entered into orbit around Mars and the Mars Orbiter Laser Altimeter (MOLA) started to map the topography of the planet to unprecedented accuracy. On its first pass across the planet, MOLA showed large areas of the northern hemisphere to be flatter than any other known surface on Earth or any other body explored to date. In January 1999, the NEAR spacecraft which carries a laser ranger (NLR), will arrive at the S-type asteroid, Eros, and during the following year the NLR will help determine the shape and rotational dynamics of this asteroid. In the Spring of 2000, the Vegetation Canopy Lidar (VCL) mission will be launched and employing a multi-beam laser altimeter (MBLA) will measure the Earth's tree canopy shapes and heights and begin to globally monitor the biomass. The following year, in 2001, the Geoscience Laser Altimeter System, which carries a 2 wavelength laser altimeter of a few centimeter accuracy, will begin a multi-year observation program of the Earth's icecaps, land mass, oceans and the clouds of the atmosphere. At the same time, laser ranging to satellites and the moon is likely to be poised to reach to the planets and track spacecraft throughout the inner solar system by applying optical transponder technology to increase its distance capability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call