Abstract

One of the most common impurities in synthetic diamond is single substitutional nitrogen, which is incorporated in the diamond lattice substituting a carbon atom [1]. If the nitrogen is adjacent to a vacancy in the diamond lattice, it forms the nitrogen-vacancy (NV) colour centre (CC) [1]. The negatively charged state of this CC, NV-, is particularly well studied since its quantum properties are suitable for applications such as quantum information processing, single-photon sources and optical magnetometry [2]. NV CCs in the neutral state (NV0) are less widely studied. This CC exhibits broadband luminescence at slightly shorter wavelengths than NV-, and hence is also potentially of interest for tuneable and ultrafast visible laser applications. In this report, we present a detailed study of the laser-related spectroscopic properties of a diamond containing NV0 and NV-CCs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call