Abstract

Laser-induced temperature rise in anisotropic substrates has been investigated by solving the heat equation in anisotropic media. A model was derived to calculate the laser-induced temperature in anisotropic substrates. It is found that the heat equation in anisotropic media can be simplified to a heat equation in isotropic media by coordinate transformation. The anisotropy of the media can then be reflected by heat source transformation. The results reveal that the laser-induced temperature rise can be significantly affected by the anisotropy of the substrate. The thermal conductivity change along the Z direction (downward into the substrate) will affect the temperature rise more significantly than that along the X and Y directions (parallel to the substrate surface). The anisotropy in thermal conductivity not only affects the peak temperature rise, but also affects the shape of the temperature profile.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.