Abstract

Here, we newly proposed laser-induced graphene (LIG) stamp to transfer directly it onto Au substrate from polyimide (PI) substrate. The stamped-LIG was strongly adhered by van der waals force with Au. Unlike conventional transferred LIG electrode composed of totally carbon-based material, the proposed LIG stamp was formed with several layers of carbon on top of highly conductive Au electrode resulting in the improvement electrical and electrochemical properties. In addition, we successfully electrodeposited Pt nanoparticles (PtNPs) as catalytic material on the surface of the stamped LIG for electrochemical biosensor applications, which also resulted in highly improved redox characteristics. We characterized and compared various materials such as Au, Au/PtNPs, Au/stamped-LIG, and Au/stamped-LIG/PtNPs through cyclic voltammetry and amperometric measurement. As a result, the electrical and electrochemical redox properties were much improved. Through amperometric measurement, the developed electrochemical sensor electrode indicated $69.33 \mu \mathrm{A}/\text{mM}\cdot \text{cm}^{2}$ of the sensitivity at hydrogen peroxide concentration of 10 to $3760 \mu \mathrm{M}$ and limit of detection of $2.2 \mu \mathrm{M}$ , respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.