Abstract

Laser-induced graphene (LIG) has gained considerable attention recently due to its unique properties and potential applications. In this study, we investigated using LIG in polyimide (PI) as a material for antenna applications. The LIG-−PI composite material was prepared by a facile picosecond laser (1064 nm) irradiation process, which resulted in a conductive graphene network within the PI matrix. Furthermore, LIG formation was confirmed by Raman spectroscopy and sheet resistance measurements. Finally, a patch antenna from LIG with 2.45 GHz microwaves was simulated, produced and tested. These findings suggest that LIG−PI composites have great potential for use in high-frequency electronic devices and can provide a new avenue for the development of flexible and wearable electronics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.