Abstract

Laser machining of optics to mitigate surface defects has greatly enhanced the ability to process large optics such as those found in fusion-class lasers. Recently, the use of assist reactive gases has shown promise in enhancing manifold etching rates relative to ambient conditions for CW-laser exposures. However, these methods still require significant heating of the substrate that induce residual stress, redeposit coverage, material flow, and compromise the final surface finish and damage threshold. While very reactive fluorinated gases are capable to reduce treatment temperatures even further, they are also inherently toxic and not readily transferable to large processing facilities. In this report, we look at whether a short-lived gas plasma could provide the safe and effective etchant sought, while still reducing the thermal load on the surface. We test this approach using a YAG laserinduced gas plasma to act as a source of the etchant for fused silica, a common optical material. The configuration and orientation of the beam and optical apparatus with respect to the surface was critical in preventing surface damage while etching the surface. Results with N<sub>2</sub> and air gas plasmas are shown, along with a description of the various experimental implementations attempted.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call