Abstract

We present a laser-based transfer method for the novel application of fabricating elements for planar thermoelectric devices. Thin films of thermoelectric chalcogenides (Bi2Te3, Bi2Se3 and Bi0.5Sb1.5Te3) were printed via laser-induced forward transfer (LIFT) onto polymer-coated substrates over large areas of up to ∼15 mm2 in size. A morphological study showed that it was possible to partially preserve the polycrystalline structure of the transferred films. The films’ Seebeck coefficients after LIFT transfer were measured and resulted in −49±1 μV/K, −93±8 μV/K and 142±3 μV/K for Bi2Te3, Bi2Se3 and Bi0.5Sb1.5Te3, respectively, which were found to be ∼23±6 % lower compared to their initial values. This demonstration shows that LIFT is suitable to transfer sensitive, functional semiconductor materials over areas up to ∼15 mm2 with minimal damage onto a non-standard polymer-coated substrate.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.