Abstract

In order to study the effect of material properties on the laser induced damage of dielectric coatings at a wavelength of 248 nm, multilayer coatings were deposited by electron beam reactive evaporation technique onto fused silica substrates with the materials of hafnium oxide, aluminum oxide and silicon dioxide. Laser-induced damage thresholds (LIDTs), morphologies and profiles of damage sites of multilayer thin films were measured to investigate the damage mechanism. Besides, with our programmed software, the temperature rise in the multilayers was calculated to better understand the relationship between damage morphology, electric field peak location and depth of damage sites. The results indicate that the absorption of defect and the electric field distribution of thin film greatly contribute to LIDTs of thin films, and the control of defect, especially defect with strong absorption, is still the only way to improve the laser radiation resistivity of coatings in the UV spectral region.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.