Abstract

Abstract Femto-second laser irradiation on P3HT:PCBM solutions have been demonstrated to have a significant impact on the conformational structures and photovoltaic performance of the resultant thin films. The crystallinity and edge-on/face-on conformations of P3HT and the aggregation of PCBM can be manipulated by controlling the wavelength (400–800 nm) and illumination duration (1–3 h) of the lasers. Grazing incidence wide- and small-angle X-ray scattering (GIWAXS and GISAXS) have been simultaneously utilized to characterize the nanostructures of the P3HT:PCBM blend films spin-cast from pristine and laser-irradiated solutions. The results show that the crystallinity, π-π* stacking and face-on conformations of P3HT can be enhanced as a result of the laser irradiation at 500 nm for 3 h. Furthermore, the diffusion and aggregation of PCBM molecules are suppressed by the photo-induced dimerization, as evidenced by the Raman spectra of the films cast from laser-irradiated PCBM solutions. The time-resolved fluorescence decay profiles show the charge transfer efficiency is improved, which may correlate to the supramolecular ordering of the polythiophene chains and the optimized phase separation in P3HT:PCBM composite. In the P3HT:PCBM active layer of the organic solar cells, more efficient charge transport and fine interpenetrating networks can be achieved due to the improved conformational microstructures. Consequently, the short-circuit current densities and power conversion efficiencies can be enhanced in organic solar cells based on the laser-irradiation processed P3HT:PCBM solutions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call