Abstract

Coulomb explosion of 1,4--diiodobenzene molecules, isolated or embedded in helium nanodroplets, is induced by irradiation with an intense femtosecond laser pulse. The recoiling ion fragments are probed by time-of-flight measurements and two-dimensional velocity map imaging. Correlation analysis of the emission directions of ${\mathrm{I}}^{+}$ ions recoiling from each end of the molecules reveals significant deviation from axial recoil, i.e., where the ${\mathrm{I}}^{+}$ ions leave strictly along the I-I symmetry axis. For isolated molecules, the relative angular distribution of the ${\mathrm{I}}^{+}$ ions is centered at ${180}^{\ensuremath{\circ}}$, corresponding to perfect axial recoil, but with a full width at half maximum of ${30}^{\ensuremath{\circ}}$. For molecules inside He droplets, the width of the distribution increases to ${45}^{\ensuremath{\circ}}$. These results provide a direct measure of the accuracy of Coulomb explosion as a probe of the spatial orientation of molecules, which is particularly relevant in connection with laser-induced molecular alignment and orientation. In addition, our studies show how it is possible to identify fragmentation pathways of the Coulomb explosion for the isolated 1,4--diiodobenzene molecules. Finally, for the 1,4--diiodobenzene molecules in He droplets, it is shown that the angular correlation between fragments from the Coulomb explosion is preserved after they have interacted with the He environment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.