Abstract

When a high-power laser beam is focused into liquid, it results in a shock wave emission and cavitation bubble generation. Upon inserting a rigid substrate into the liquid, the bubbles migrate towards the substrate due to the Bjerknes attractive force. Due to bubble–substrate and/or bubble–free-surface interaction, a high-speed liquid jet is formed during bubble collapse, and a collapse shock wave is generated at the moment of bubble collapse near the substrate. These shock waves and liquid jet induce large forces acting on the substrate to remove particles from it. For a substrate several millimeters away from the laser focus point, the collapse shock wave and liquid jet play key roles in removal of particles. The cleaning efficiency increases with an increase of laser fluence and decreases with an increase of distance between substrate surface and laser beam focus point or depth below liquid surface. In a case of bubbles close to substrate and liquid-surface boundaries, implosion of the bubbles will give rise to shock waves and liquid jets oblique to the substrate surface with the parallel and perpendicular components of the forces onto the particles. These oblique liquid jets and shock waves result in high cleaning efficiency. A liquid, such as alcohol and commercial washing solution, as the surrounding medium, rather than air or vacuum, can reduce adhesion force and enhance cleaning efficiency.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call