Abstract

The tests commonly used to determine seed vigor are often laborious and time-consuming; thus, rapid methods are highly required for identifying high-vigor seeds among different batches. In this paper, we describe a novel approach able to distinguishing among batches of soybean seeds of different physiological quality based on their nutrient content measured by laser-induced breakdown spectroscopy (LIBS) assisted by multivariate analysis and machine learning algorithms. These include principal component analysis (PCA), support vector machine learning (SVM), linear and quadratic discriminant analyses (LDA and QDA), and nearest neighbor methods (KNN). A total of 92 measurements, 46 collected from batches marketed as low-vigor seeds and 46 as high-vigor seeds, were analyzed. The SVM method performed the best in discriminating among the batches. In particular, the quadratic SVM function could classify correctly 100% of the high-vigor samples and 97.8% of the low-vigor samples, whereas the cubic function yielded the opposite result; i.e., 97.8% of the high-vigor samples and 100% of the low-vigor samples were classified correctly. The best LIBS spectral region for the analysis was in the range of 350–450 nm, with calcium being the main distinguishing element. Thus, the LIBS technique combined with machine learning classification methods showed a promising potential for classifying soybean seed batches according to their physiological quality.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.