Abstract
We describe progress in developing a novel miniaturized laser-heated “microfurnace” aimed at preparing ultra-small (∼5 μg) graphite samples from CO2 (Smith et al. 2006, 2007, 2010). Recent effort has focused on automation of the process using a LabVIEW interface, which has permitted feedback control of the catalyst temperature as the reaction proceeds and the logging of reaction parameters. We trialed a number of different pure iron catalysts as well as Fe2O3 (which is reduced in situ to iron) and discuss the reaction rates. We studied the graphite morphology by scanning electron microscopy (SEM) and found there is a marked difference in graphite morphology with catalyst type. We assessed how each catalyst performs in the cesium sputter ion source of the ANTARES Accelerator Mass Spectrometry (AMS) facility. We utilized a quadrupole mass spectrometer to study the gas composition during the reaction, in order to better understand the underlying chemical reactions for such small samples and to better estimate the overall efficiency of the process. Results show that all CO2 is converted to CO by reduction on the iron catalyst within a few minutes of applying laser power. The reaction pressure stabilizes after 40 min; however, some CO is not converted to graphite. The cold trap temperature of –80 ° is effective at trapping H2O, so there is little CH4 production.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.