Abstract

Implanting active hearing devices in the lateral base of the skull requires high-precision, secure fixation of the electromagnetic transducer and long-life anchorage using osteosynthetic fixation plates referred to as mountain brackets. Nonlinear distortion in the acoustic signal path and consecutive implant loosening can only be avoided by exact osseous milling to create the necessary cavity bed while avoiding excessive milling. Robot technology is ideal for high-precision milling. However, safety measures are necessary in order to prevent errors from occurring during the reduction process. Ideally, a robot should be guided by a navigation system. However, robotic systems so far available do not yet have an integrated global navigation system. We used an animal model under laboratory conditions to examine the extent to which the semiautomatic ROBIN assistant system developed could be expected to increase osseous milling accuracy before implanting active electronic hearing devices into the recipient tissue in the cranium. An existing prototype system for robot-assisted skull base surgery was equipped with laser sensors for geometric measurement of the operation site. The three-dimensional measurement data was compared with CT simulation data before, during, and after the robot-assisted operation. The experiments were conducted on test objects as well as on animal models. Under ideal conditions, the operation site could be measured at a spatial resolution of better than 0.02 mm in each dimension. However, reflections and impurities in the operation site from bleeding and rinsing fluids did have a considerable effect on data collection, necessitating specialised registering procedures. Using an error-tolerant procedure specifically developed, the effective registering error could be kept under 0.3 mm. After milling, the resulting shape matched the intended form at an accuracy level of 0.8 mm. The results show that robot systems can reach the accuracy required for reliable microsurgery on the cranial base. High-resolution laser-based geometric measurement of the operation site enables head registration without additional artificial landmarks. During the navigated operation, the procedure can be used to ensure that the resulting cavity matches the intended shape as determined in the preoperative planning phase. This will enable quantitative analysis of, and improvement in the quality of robot-assisted surgery in the future.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call