Abstract

Carbon fiber reinforced polymer (CFRP) offers the highest potential for lightweight applications due to its excellent weight to strength ratio in comparison to other materials. However, it is cost-intensive and therefore rarely used monolithically. This makes pretreatment and joining processes so important. Hybrid connections of CFRP and metals can be made by riveting, bolting, stir joining and by adhesive. For adhesive bonding, a pretreatment of the materials is necessary. A laser pretreatment has the advantage, that it is automatable and contactless. This paper deals with the pretreatment of CFRP with different laser wavelengths in near-infrared (NIR, 1030 and 1064 nm) and ultraviolet (UV, 355 nm) range. The influence of the processing direction relative to the fiber layer and the influence of the energy density was investigated with a short pulsed NIR infrared laser. In addition, the influence of different surface structures on the mechanical strength was investigated. The treated CFRP surfaces were examined with a light microscope and a scanning electron microscope. The tensile shear strengths were determined using CFRP and aluminum substrates, joined with a 2-part epoxy adhesive. As a comparison, UV laser treated specimens were also mechanically tested. An ultra-short pulsed NIR laser system was used to generate periodic structures on the CFRP to maximize the surface area without fiber damage and breakage. The investigations on the influence of the machining direction with NIR relative to the fiber layer showed insignificant differences in shear strengths. The variation of the energy density showed an influence on the ablation behavior of the CFRP matrix and the mechanical strength. The maximum strength with a cohesive failure in the adhesive was achieved with optimized short pulsed NIR laser parameter.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.