Abstract

‡‡ In this investigation, two laser-based measurement techniques are implemented in a direct-connect hydrocarbon-fueled scramjet combustor. Planar laser-induced fluorescence (PLIF) of the OH radical is used to examine the flame structure within the combustor. Tunable diode laser-based absorption spectroscopy (TDLAS) is used to measure water vapor concentration and static temperature near the combustor exit. Combined with conventional measurements and Reynolds-averaged CFD simulations, these optical diagnostic techniques significantly enhance the information that is obtained from the scramjet combustor. In this study, wall pressure data show the combustor to be operating in dual-mode with two regions of elevated pressure corresponding to the primary and secondary flameholding zones. The OH radical is well-distributed across the combustor with high OH concentrations occurring along the body, side, and cowl walls. TDLAS measurements indicate non-uniform body-to- cowl profiles in both temperature and water concentration. Near-wall regions are found to be the hottest while the core region is cooler. Similarly, the highest concentrations of water vapor are found near the walls. In general, CFD results compare well with the experimental data, although there are dissimilarities that are probably related to turbulence and chemistry sub-models within the CFD code.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.