Abstract

We present a laser-assisted spray pyrolysis method to fabricate nanoparticle coatings of metal oxides. In this process, 1.5-μm size droplets of a titanium- or iron-containing organometallic precursor were injected into a vacuum chamber with SF6 carrier gas. The strong absorption of a 3W CO2 laser beam focused onto the injector tip in the presence of SF6 increased the temperature of the gas and the droplets to about 300 °C. Films deposited on heated substrates with and without the CO2 laser heating were studied by atomic force microscopy. The laser heating of the droplets caused the solvent to evaporate before depositing on the substrate, leading to grain sizes that are about a factor of 3 smaller than those deposited without laser heating. By controlling the concentration of the precursor in the solvent, the average particle sizes have been tuned from 80 to 50 nm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.