Abstract

This paper describes a micro-pumping technology using laser induced thermal bubbles, which offers greater flexibility for selective control of flow directions in microfluidic chips. Without complicated fabrication, the bubble in the microchannel could be created by focusing a continuous-wave laser onto the patterned metal pad. Experiments demonstrate that the flow direction can be freely chosen at a T-junction and the flow velocity could be adjusted from 100 to 400 µm/s in real time by adjusting the laser power. This technology can be readily incorporated into the lab-on-a-chip systems for flexible microfluidic manipulation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.