Abstract

Radiation nanomedicine is an emerging field, which utilizes nanoformulations of high-Z elements and nuclear agents to improve therapeutic outcome and to reduce radiation dosage. This field lacks methods for controlled fabrication of biocompatible nanoformulations. Here, we present application of femtosecond laser ablation in liquids to fabricate stable colloidal solutions of ultrapure elemental Bi and isotope-enriched samarium oxide nanoparticles (NPs). The obtained spherical Bi and Sm oxide NPs have controllable size, while Bi NPs have remarkable absorption in the near-IR region. Exempt of any toxic by-products, laser-ablated Bi and Sm oxide NPs present a novel appealing nanoplatform for nuclear and radiotherapies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call