Abstract
AbstractColor centers, optically active defects within solids, are vital for leading quantum information technologies such as quantum computing and quantum sensing. An essential prerequisite for realizing scalable quantum architectures is the ability to create quantum emitters deterministically. In the last decades, significant efforts have been devoted to selectively generating color centers. One of the most used methods is high‐energy ion implantation. However, this method usually causes extended lattice damage along the entire trajectory because of ions bombardment. Moreover, the position depth of color centers is also limited by the ions penetrate length in crystals. The direct laser‐writing (DLW) technique has recently emerged as a powerful tool to create color centers in solid‐state materials. It can define color centers at arbitrary depths inside the substrate and operate at the ambient environment, therefore, providing a feasible 3D fabrication method for integrated quantum photonics. Here, recent advancements of laser writing of color centers in solid‐state materials are reviewed, from bulk crystals, such as diamond and silicon carbide, to nanostructures, involving single‐walled carbon nanotubes, 2D layered materials, and quantum dots.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Laser & Photonics Reviews
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.