Abstract

We study the locked-unloked transition for a class of lasers with injected signal. The transition is produced by a parametric breaking of the invariant circle that represents the free running laser. A Hopf-saddle-node codimension two bifurcation coupled with a phase-drift re-injection mechanism organizes the flow. Fixed points (locked states), periodic orbits and tori, T 2, of two inequivalent types as well as hetero-homoclinic loops are found by using methods of bifurcation theory and are illustrated with computer simulations. We discuss the dependence of the flow patterns with respect to the laser parameters and, in particular, we show that the detuning between atomic and cavity frequencies plays a fundamental role for the dynamics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.