Abstract

For laser welding, gaps should normally be avoided to ensure stable weld processes and high weld quality. Nonetheless, sometimes, gaps are resulting from non-optimal weld preparation in industrial applications. Within this investigation, the effects of a defocussed beam and laser beam oscillation on gap bridging abilities at reduced ambient pressure were investigated. For reference purpose, conventional laser welding with zero gap at ambient pressure was performed, too. The resulting weld geometry was investigated and correlated to gap bridging strategies and weld quality groups according to ISO 13919–1. The welds were characterized regarding their hardness and weld microstructure. Residual stress was determined by means of X-ray diffraction, and tensile tests as well as fatigue tests were conducted. The fatigue tests were evaluated by the nominal stress approach, the critical distance approach, and the stress averaging approach and correlated to weld quality measures. Resulting from this, fatigue resistance of laser welded butt welds with gap can be estimated by the FAT160 design S–N curve. The stress evaluation parameters for the determination of keff-values (ρ* = 0.4 mm, a = 0.1 mm) were confirmed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.