Abstract

Penetration depth is an important factor critical to the quality of a laser weld. This paper presents a 3D heat conduction model with a moving line source to correlate the temperature measured on the bottom surface of the workpiece to the weld penetration, weld bead width and welding speed. Temperatures on the bottom surface of the workpiece are measured using infrared thermocouples located behind the laser beam. The averaging effect due to the temperature measurement spot size is analyzed. This paper provides a model-based approach for laser weld penetration monitoring instead of a pure empirical correlation between a measured signal (e.g., acoustic, infrared) and the penetration depth. Experiments were conducted to compare the depth estimation based on the model to bead-on-plate welds on low carbon steel plates of varying thickness at different laser power levels and speeds. It is shown that the temperature on the bottom surface is a consistent indicator of penetration depth and that the correlation is also sensitive to the sensor location as well as other process conditions such as weld shape, width, and the plate thickness. The proposed model is computationally efficient and is suitable for on-line process monitoring application.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call