Abstract

An ultrashort (about 30fs) petawatt laser pulse focused with a wide focal spot (about 100μm) in a rarefied plasma (n0∼1017cm−3) excites a nonlinear plasma wakefield which can accelerate injected electrons up to GeV energies without any pulse channeling. Under these conditions, propagation of the laser pulse with an overcritical power for relativistic self-focusing is almost the same as in vacuum. The nonlinear quasiplane plasma wave, whose amplitude and phase velocity vary along the laser path, effectively traps and accelerates injected electrons with a wide range of initial energies. Electrons accelerated over two Rayleigh lengths (about 8cm) can gain energies up to 1Gev. In particular, the electrons trapped from a long (τb∼330fs) nonresonant electron beamlet of 1MeV particles eventually form a low emittance bunch with energies in the range 900±50MeV. These conclusions follow from two-dimensional simulations performed in cylindrical geometry by means of the fully relativistic time-averaged particle code WAKE [P. Mora and T. M. Antonsen, Jr., Phys. Rev. E 53, R2068 (1996); Phys. Plasmas 4, 217 (1997)].

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.