Abstract
The three-dimensional average velocity field in an automotive torque converter turbine was examined. Two significantly different operating conditions of the torque converter were tested: the 0.065 and 0.800 turbine/pump speed ratio. Velocities were measured using a one-directional, frequency-shifted laser velocimeter. The instantaneous angular positions of the torque converter turbine and pump were recorded using digital shaft encoders. Shaft encoder information and velocities were correlated to generate average velocity blade-to-blade profiles and velocity vector plots. Measurements were taken in the inlet, quarter, mid, and exit planes of the turbine. From the experimental velocity measurements, mass flows, turbine output torque, average vorticities, viscous dissipation, inlet incidence flow angles, and exit flow angles were calculated. Average mass flows were 23.4 kg/s and 14.7 kg/s for the 0.065 and 0.800 speed ratios, respectively. Velocity vector plots for both turbine/pump speed ratios showed the flow field in the turbine quarter and midplanes to be highly nonuniform with separation regions and reversed flows at the core-suction corner. For the conditions tested, the turbine inlet flow was seen to have a high relative incidence angle, while the relative turbine exit flow angle was close to the blade angle.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.