Abstract

Metallurgical defects in metal laser additive manufacturing (LAM) are inevitable due to complex non-equilibrium thermodynamics. A laser ultrasonic system was designed for detecting surface/near-surface defects in the layer-by-layer LAM process. An approach was proposed for ultrasonic imaging of defects based on variable time window intensity mapping with adaptive 2σ threshold denoising. The Gaussian mixture model hypothesis and expectation-maximization algorithm can automatically differentiate between components dominated by defects and background noises, thereby providing an adaptive threshold that accommodates detection environments and surface roughness levels. Results show that the ultrasonic wave reflection at defect boundaries diminishes far-field ultrasonic intensity upon pulsed laser irradiation on surface defects, enabling defect size and location characterization. This method is applicable to LAM samples with a significant surface roughness of up to 37.5 μm. It can detect superficial and near-surface defects down to 0.5 mm in diameter and depth, making it significant for online defect detection in additive manufacturing.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.