Abstract

We report on a comprehensive micromachining study of rotationally symmetric parts using femtosecond laser. A laser turning process with tangential impingement of the laser radiation complemented by a trepanning optics is implemented as to accomplish a true laser lathe micromachining approach. With the objective of optimized ablation rate and reduced surface roughness, the influence of pulse energy, feed rate, trepanning diameter and angular beam incidence, respectively, is investigated for processing stellite rods. We find the smallest feasible feature sizes of 8.5 μm in diameter and smoothest surfaces with an arithmetic average of the roughness profile as low as 0.18 μm. The surface roughness, however, appears to be limited by the occurrence of laser induced periodic surface structures provoked by the femtosecond laser radiation. Furthermore, the variation of the fluence in accordance to the incidence on a curved surface is discussed and the heat input into the material is examined through a longitudinal cross section.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.