Abstract

Surface hardening of AISI 440C martensitic stainless steel was achieved by laser transformation hardening (LTH) using a high-power CW Nd:YAG laser. A hardened layer of a few 100 μm thick, composed of martensite, retained austenite and fine carbides was formed. The microstructure and hardness of the laser-treated layer were dependent on the laser processing parameters, with the hardness values reaching the range 600–800 HV. Compared with conventionally heat-treated samples, the laser-treated samples contained more retained austenite and finer carbides due to a higher degree of carbide dissolution. The cavitation erosion resistance of AISI 440C was significantly improved after laser treatment, and was approximately three-fold higher compared with that achieved by conventional heat treatment. The high erosion resistance was attributable to a desirable microstructure, which exhibited a favorable combination of hardness and toughness, and contained fewer weak sites for erosion attack.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call