Abstract

Laser transfer processing (LTP) offers the potential to overcome the problems of integrating ferroelectric thin and thick film materials with polymers and other technologically useful substrate materials that cannot sustain the high process temperatures, 600–1,000 °C, required for normal film deposition. The LTP technique involves the fabrication of a ceramic film on a high-temperature substrate material such as sapphire, and subsequent release by application of pulsed ultra-violet laser radiation. Here, the LTP technique is reviewed in the context of ferroelectric thin and thick films, and current developments are presented. Micro- and nanostructural features of the films before and after transfer to a second substrate are revealed using scanning and transmission electron microscopy. The consequences of laser-generated structural changes on ferroelectric properties are illustrated, and measures to mitigate the effects of an amorphous damage-layer are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.