Abstract
We present an experimental and theoretical comparison of two different scattering-type scanning near-field optical microscopy (s-SNOM) based techniques in the terahertz regime; nanoscale reflection-type terahertz time-domain spectroscopy (THz nanoscopy) and nanoscale laser terahertz emission microscopy, or laser terahertz emission nanoscopy (LTEN). We show that complementary information regarding a material's charge carriers can be gained from these techniques when employed back-to-back. For the specific case of THz nanoscopy and LTEN imaging performed on a lightly p-doped InAs sample, we were able to record waveforms with detector signal components demodulated up to the 6th and the 10th harmonic of the tip oscillation frequency, and measure a THz near-field confinement down to 11 nm. A computational approach for determining the spatial confinement of the enhanced electric field in the near-field region of the conductive probe is presented, which manifests an effective "tip sharpening" in the case of nanoscale LTEN due to the alternative geometry and optical nonlinearity of the THz generation mechanism. Finally, we demonstrate the utility of the finite dipole model (FDM) in predicting the broadband scattered THz electric field, and present the first use of this model for predicting a near-field response from LTEN.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.