Abstract
Laser Thomson scattering (LTS) is shown to provide a useful means for measurements of negative ion density in a glow discharge plasma. Because the saturation energy density is so low that complete photo-detachment occurs at a very early stage of the probing laser pulse for the LTS measurement, the main part of the laser pulse is Thomson scattered by the photo-detached electrons as well as those already generated in the discharge. The energies of photo-detached electrons are below the energy difference between the photon energy and the electron affinity of the negative ions, and Thomson scattering from these appears below the difference energy. The principle has been tested using the second harmonic of a YAG laser light (532 nm) against an inductively coupled plasma operated in a mixture of Ar(80%)/O2(20%) at a pressure of 20 mTorr, and yielded the negative ion density of 1.5×1017 m-3, which amounted to 37% of the electron density of 4.1×1017 m-3 or 27% of the negative charges (electrons and negative ions).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.