Abstract
Owing to their multi-elemental compositions and unique high-entropy mixing states, high-entropy alloy (HEA) nanoparticles (NPs) displaying tunable activities and enhanced stabilities thus have become a rapidly growing area of research in recent years. However, the integration of multiple elements into HEA NPs at the nanoscale remains a formidable challenge, especially when it comes to the precise control of particle size, elemental composition and content. Herein, a simple and universal high-energy laser assisted reduction approach is presented, which achieves the preparation of HEA NPs with a wide range of multi-component, controllable particle sizes and constitution on different substrates within seconds. Laser on carbon nanofibers induced momentary high-temperature annealing (>2000 K and ramping/cooling rates > 105 K s−1) to successfully decorate HEA NPs up to twenty elements with excellent compatibility for large-scale synthesis (20.0 × 20.0 cm2 of carbon cloth). The IrPdPtRhRu exhibit robust electrocatalytic hydrogen evolution reaction (HER) activities and low overpotentials of 16, 28, and 12 mV at a current density of 10 mA cm−2 in alkaline (1.0 M KOH), alkaline simulated seawater (1.0 M KOH + 0.5 M NaCl), and acidic (0.5 M H2SO4) electrolytes, respectively, and excellent stability (7 days and >2000 cycles) at the alkaline HER.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.