Abstract

Surface texturing with a laser beam is an effective method for engraving on the surface of biomaterials. The four laser texturing parameters (scan speed, frequency, fill spacing, and pulse width) having five different values were associated with five different scanning strategies (scan direction), and a total of 25 texturing conditions were tested on the Ti-6Al-7Nb alloy surface. The surface roughness and wettability of the textures created with a 20 W nanosecond fiber laser with a wavelength of 1064 nm on the surface of Ti-6Al-7Nb biocompatible alloy were investigated. Laser texturing parameters were analyzed according to the lowest surface roughness and a hydrophilic surface by creating L25 orthogonal arrays. The surface roughness values ranged between 2 and 26 µm. The lowest surface roughness with a value of 2.21 µm was achieved when the texture was processed with a frequency of 150 kHz, a fill spacing of 0.02 mm, a scan speed of 800 mm/s, a pulse width of 250 ns, and a cross-hatch strategy of 0°/90°. Considering the wettability test results, it was revealed that most of the textured surfaces have super hydrophilic and hydrophilic characteristics except the surface with a contact angle of 92.93°. The relevant surface was textured with 75 kHz frequency, 1000 mm/s scan speed, 0.05 mm fill spacing, 200 ns pulse width, and 45°/-45° cross-hatch strategy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.