Abstract

A laser terahertz emission system is proposed to investigate the catalytic metal/semiconductor interfaces of hydrogen sensors. Samples were fabricated by depositing a catalytic metal thin film on a semi-insulating silicon substrate. A femtosecond laser was used to radiate terahertz waves from the sample in a gas cell filled with a hydrogen and nitrogen gas mixture. The peak amplitude of the terahertz waves decreased with increasing hydrogen concentration. We also fabricated a metal-oxide-semiconductor field effect transistor hydrogen sensor, and compared its properties with the terahertz radiation properties. These results suggest that the laser terahertz emission system is a potential tool to investigate catalytic metal/semiconductor interfaces.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.