Abstract

The results of the theoretical study of damage and nonlinear light absorption mechanisms in transparent materials, i.e., wide band-gap semiconductors and insulators, are presented. It is shown that ablation processes in transparent materials exposed to laser pulses with intensity of the order of tens of TW/cm2 and pulse duration of the order of hundreds femtoseconds are efficient for various surface treatment technologies. The mechanism of tunneling nonlinear light absorption is studied. Ablation thresholds of GaN and other transparent materials such as sapphire (Al2O3), vitreous SiO2, and the same SiO2 with Ge impurity are determined. It is found that the ablation threshold depends on the band gap (absorption band edge) Eg as Eg3, which is in good agreement with experiment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.